In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles
نویسندگان
چکیده
One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation.
منابع مشابه
Metallic glassy Zr70Ni20Pd10 powders for improving the hydrogenation/dehydrogenation behavior of MgH2
Because of its low density, storage of hydrogen in the gaseous and liquids states possess technical and economic challenges. One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides. Magnesium hydride (MgH2) remains the best hydrogen storage material due to its high hydrogen capacity and low cost of production. Due...
متن کاملEvidence of the hydrogen release mechanism in bulk MgH2
Hydrogen has the potential to power much of the modern world with only water as a by-product, but storing hydrogen safely and efficiently in solid form such as magnesium hydride remains a major obstacle. A significant challenge has been the difficulty of proving the hydriding/dehydriding mechanisms and, therefore, the mechanisms have long been the subject of debate. Here we use in situ ultra-hi...
متن کاملIn situ synthesized one-dimensional porous Ni@C nanorods as catalysts for hydrogen storage properties of MgH2.
We have demonstrated an extremely facile procedure for the preparation of 1D porous Ni@C nanostructures by pyrolysis of Ni-based coordination polymer nanorods. The highly aligned Ni-based polymer nanorods were prepared using nitrilotriacetic acid (NTA) as a chelating agent by a one-step solvothermal approach. The obtained precursors are demonstrated to have a well-designed 1D nanostructure and ...
متن کاملIn situ reflection high energy electron diffraction study of dehydrogenation process of Pd coated Mg nanoblades
The near surface structural evolution in dehydrogenation process of air exposed Pd coated Mg nanoblades was characterized in situ from room temperature to 573 K using reflection high energy electron diffraction RHEED . The evolved normalized diffraction intensity and the full width at half maximum of diffraction peaks have been correlated with the growth of crystal and the change in crystal siz...
متن کاملEffect of Milling Time on Hydrogen Desorption Properties of Nanocrystalline MgH2
Nanocrystalline magnesium hydride powder was synthesized by mechanical milling of MgH2 in a planetary ball mill for various times. The effect of MgH2 structure, i.e. crystallite size, lattice strain, particle size and specific surface area on the hydrogen desorption properties was investigated. A single peak of hydrogen desorption was observed for as-received powder, exhibiting an average parti...
متن کامل